High Performance on Wall Street 2016
Challenges of HPC Code Writing — Capacity,

Performance, Speed and Cost
Jeffrey M. Birnbaum

CEO and Co-Founder of 60East Technologies, Inc.
Makers of AMPS : The Advanced Messaging Processing System

Premise

By considering how our AMPS Technology outperforms popular systems,
we see how much systems leave on the table in terms of H/W resources ?

*NoSQL : 30X Performance over MongoDB on Ingestion and Queries

*Queue : Over 25X the Throughput of RabbitMQ at up to 60X lower latency
*Reducing Footprint from 11 machines to 1

*4 X More Throughput than a Pub Sub System with 0 message loss tolerance

2.5 X More Durable Throughput than Hardware Messaging Appliance

For more context, please see the following blog articles:

http://www.crankuptheamps.com//blog/posts/2016/02/26/rabbitmg-comparison-to-amps/
http://www.crankuptheamps.com//blog/posts/2015/07/22/reality-check-pure-software-beats-hardware/
http://www.crankuptheamps.com//blog/posts/2014/09/24/ultimate-shock-absorber/

Performance Drivers

* Traditional Drivers for HPC?
— Critical to Market Making and other low latency markets

— Handle Larger and Larger Data Volumes and Load

— Handle Peak Loads by leveraging full extent of Machine resources
e Why HPC is now needed everywhere?

— Significantly Reduce H/W Footprint Costs by scaling out less

— Lowering Latency enables one to add value-added capabilities that

were previously cost prohibitive (i.e. streaming analytics for HPC or
content filtering)

Truth or Myth: “No More Free Lunch”?

The End

of Historic Scaling

See Scale Up and Out :
http://www.crankuptheamps.com/downloads/documentation/CXO-Insight-Mar-2015.pdf

But, We are Leaving Too Much on the
Table.....

Financial Services
s Low Latency Trading
sssess Monte Carleo

Risk Analytics
Network Bandwidth Cores

Flops/Core

Memory Capacaty

Twenty Years ago, apps were designed for slow disks and networks and single threaded. It seems like they still are.

Architectural Patterns still assume multi-threaded is too hard, disks and networks are too slow and scaling out and out is the norm.
We are learning that big data and real time problems require better thinking:

http://www.crankuptheamps.com//blog/posts/2015/10/01/nba-of-data-science/

Let’s Review Some Important #s

Numbers (Jeff Dean says) Everyone
Should Know

L1l cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

http://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf

Evolving Elements of HPC

CPUs — Cores from 8 to 24
Storage — march towards SSD, NVME, XPoint

Network — around $S3000 for a 100Gb per port
(i.e. Arista 100Tb switch)

Memory — 512 GB is common; Larger cache
sizes

CPUs, Cores and Concurrency

*Embracing Multi-core
*Multi-Threaded
*Beyond the 80-20 Rule
*Tune Everything
*Lock free Data Structures
*Generation Count

. Cinebench 11.5
i N U MA tuni ng Single and Multi-Threaded Rendering

Score, Higher is Better
*Most DB products say turn Core 7-5350x
NUMA off. We keep it on e
because we did the hard work.

Core i7-5960X

*Throughput :
*Message Pipelines
*Divide and Conquer Core i7-4790K

Core i7-3960X

Core i7-4770K

0 5 10 15

http://www.extremetech.com/computing/188911-intel-haswell-e-review-the-best-consumer-performance-chip-you-can-buy-with-some-caveats/2

Leaving Things on the Table

Durable Queue Write Throughput - HDD

350K 1 Publisher, 1 Subscriber 1Publisher, 8 Subscribers 8 Publishers, 8 Subscribers
f] f] Kn)
= o0 293
c
o
& 250k 235K
by
Qo
g 200K
“
S 150K
. W
w
@
@ 100K
v
g
50K
I18k I18k 19k I18k
K O
512 1024 1024 128 1024
PayloadSize

® AMPS mRabbitMQ

One is not taking advantage of the resources . AMPS Queue store and forward model is impacted by larger message sizes written to
persistent disk. The bottle neck should be due to the h/w limits.

http://www.crankuptheamps.com//blog/posts/2016/02/26/rabbitmg-comparison-to-amps/

Leaving Things on the Table

Durable Queue Consume Throughput-HDD

300K 1 Publisher, 1 Subscriber 1 Publisher, 8 Subscribers 8 Publishers, 8 Subscribers
: ‘ ‘. , ‘ 1 262K ‘ »

B 250k 235K 239K

S

@

v

o 200K

o

-

(-]

€ 150K

s

O

v 100K

od

)

w

wv

= 50K

18k I I18k 18k I
K]] [l
128 1024 1024 128 1024
Payload Size

m AMPS mRabbitMQ

http://www.crankuptheamps.com//blog/posts/2016/02/26/rabbitmg-comparison-to-amps/

Leaving Things
on the Table

2000000

Client Publishes Per Second

1500000

1000000

500000

=]

AMPS Fanout Test
1 Publisher 50 Subscriber with 100K publish burts
2 Socket SandyBridge E5-2690 @ 2.90GHz
Impact of NUMA Aware Code

—NotNUMA Aware ——NUMA Aware

4 5 6 7 8 9 10 11 12 13 14 15

Time (seconds)

http://www.crankuptheamps.com/downloads/documentation/hpcws-apr2013-v4.pdf

16

17

18

19

20

Best Practices 1

Focus on Forward Scalability :

When the next chip comes with a jump from 14 to
28 cores on a single die, the more concurrency
that can be realized.

Flip Side : Attention to Detail

Single threaded can be less worse than poorly/
excessively implemented locking. They are only
scaling via partitioning the data i.e. REDIS, VoltDB

Best Practices 2

Many Approaches:

— ScyllaDB /Cassandra -are sending work across node constantly without NUMA-
ness. (A Dispatch Model that partitions per core)

— Just got to do it the right way (every core is assigned a processing engine- with
a wide scale dispatch (i.e. 48 core= 48 workers (+ dispatch worker)).

Obvious thing isn’t always the best thing in a highly concurrent context.
A “B-Tree” is common for db index schemes but its not the best data
structure for highly concurrent activities. (30 X performance gain over

MongoDB in Ingestion + Querying).

i.e. AMPS doesn’t have a single model.. model for IO is not the
same as querying (i.e. parallel divide and conquer) We partition

what is important across the machine.

Storage

* How would you write your system differently if you knew there would be a 20X
to 40X improvement in storage 1/0?

e Disk

— Fine for Log Appending (low disk head movement/seek)

e SSD

— Memory Mapped
Files, Key-Value

Stores

* Promise of XPoint

80 ms throughput limited,

Once you hit memory limit, it on
is stuck at 80ms due to
back pressure

*What if that goes down to 8ms

http://www.crankuptheamps.com//blog/posts/2014/12/08/extreme storage performance/
http://www.crankuptheamps.com//blog/posts/2014/05/01/amps-faster-than-ever-with-memory-channel-storage/

Not Leaving Things on the Table

Durable Queue Write Throughput- HDD

350K 1 Publisher, 1 Subscriber 1 Publisher, 8 Subscribers 8 Publishers, 8 Subscribers
[] n'—;\ f
K
- 300K 203
c
5
& asox 23K
)
Q
T 200K
@
S 150K
a
w
@
B 100K
w
w
5 sk
I18k I18k I18k
K
1024 1024 1024

Durable Queue Write Throughput- SSD

8 Publlshers 8 Subscribers

800K 1Publisher, 1 Subscriber 1Pub|imr,85uu:ribcs _— 736K '

» , . 1

- 700K 651K

< 612K

§ 600K 550K

c 518K 00K 495K

a 500K

©

o

£

400K

3

3

& 300K

w

L)

-]

& 200K

o

2 o
18k 18k 17k

K - - -
128 1024 128 1024 1024
PaonadSize

HAMPS mRabbitMQ

Invest in a better storage device, and the software should reward you.....

Networking Advancements

How would you write your system differently if you knew there would be a 10X improvement
in network 1/0?

AMPS vs AMPS with Mellanox VMA Subscriber Rate
in msgs/sec E5-2690 v3 @ 2.60GHz over 40Gb
network and 10M 512 byte msgs

927K

1000000
900000

800000 761K
700000
600000 548K 550K

500000
@

[2])

(*))
200000
300000

200000

100000

0

1P1S 2P4S
EAMPS "AMPS_VMA

These are preliminary #s — we haven’t optimized it, this was a simple LD_Preload

Memory

Know your cache lines —and keep things in
cache whenever possible

Keep your structures and access patterns
aligned (partition read/write sections)

Minimize Heap Memory Allocation
Leverage Modern Allocators
Avoid Thread Bleeding

Wash, Rinse, Repeat

Scale Up and then Out

Scale Forward (“enjoy the free lunch”) and
plan for advancements (i.e. 40X Xpoint)

Forget about 80-20 , Optimize every last part
of your code base

Leverage Many Models/Approaches;
Continually Improve

Thank You!

Any Questions?

Feel free to contact me at:
JMB@CRANKUPTHEAMPS.COM

