
©	2015	60East	Technologies,	Inc	

High	Performance	on	Wall	Street	2016	
Challenges	of	HPC	Code	Wri@ng	–	Capacity,	

Performance,	Speed	and	Cost	

www.crankuptheamps.com

	Jeffrey	M.	Birnbaum		
CEO	and	Co-Founder	of	60East	Technologies,	Inc.	

Makers	of	AMPS	:	The	Advanced	Messaging	Processing	System	

Premise		

• NoSQL	:	30X	Performance	over	MongoDB	on	IngesAon	and	Queries	

• Queue	:	Over	25X	the	Throughput	of	RabbitMQ	at	up	to	60X	lower	latency	
• Reducing	Footprint	from	11	machines	to	1	

• 4	X	More	Throughput	than	a	Pub	Sub	System	with	0	message	loss	tolerance		

• 2.5	X	More	Durable	Throughput	than	Hardware	Messaging	Appliance	

hOp://www.crankuptheamps.com//blog/posts/2016/02/26/rabbitmq-comparison-to-amps/	
hOp://www.crankuptheamps.com//blog/posts/2015/07/22/reality-check-pure-soUware-beats-hardware/	
hOp://www.crankuptheamps.com//blog/posts/2014/09/24/ul@mate-shock-absorber/	

For	more	context,	please	see	the	following	blog	ar@cles:	

By	considering	how	our	AMPS	Technology	outperforms	popular	systems,		
we	see	how	much	systems	leave	on	the	table	in	terms	of	H/W	resources	?	

Performance	Drivers	

•  TradiAonal	Drivers	for	HPC?	
–  Cri@cal	to	Market	Making	and	other	low	latency	markets	

–  Handle	Larger	and	Larger	Data	Volumes	and	Load	

–  Handle	Peak	Loads	by	leveraging	full	extent	of	Machine	resources	

•  Why	HPC	is	now	needed	everywhere?	

–  Significantly	Reduce	H/W	Footprint	Costs	by	scaling	out	less	

–  Lowering	Latency	enables	one	to	add	value-added	capabili@es	that	
were	previously	cost	prohibi@ve	(i.e.	streaming	analy@cs	for	HPC	or	
content	filtering)	

Truth	or	Myth:	“No	More	Free	Lunch”?	

See	Scale	Up	and	Out	:	
hOp://www.crankuptheamps.com/downloads/documenta@on/CXO-Insight-Mar-2015.pdf	

But,	We	are	Leaving	Too	Much	on	the	
Table…..	

Twenty	Years	ago,	apps	were	designed	for	slow	disks	and	networks	and	single	threaded.	It	seems	like	they	s@ll	are.	

Architectural	PaOerns	s@ll	assume	mul@-threaded	is	too	hard,	disks	and	networks	are	too	slow	and	scaling	out	and	out	is	the	norm.	
We	are	learning	that	big	data	and	real	@me	problems	require	beOer	thinking:	
hOp://www.crankuptheamps.com//blog/posts/2015/10/01/nba-of-data-science/	

Let’s	Review	Some	Important	#s		

hOp://sta@c.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf	

Evolving	Elements	of	HPC		

•  CPUs	–	Cores	from	8	to	24		
•  Storage	–	march	towards	SSD,	NVME,	XPoint	

•  Network	–	around	$3000	for	a	100Gb	per	port		
	 	 	 	 	(i.e.	Arista	100Tb	switch)	

•  Memory	–	512	GB	is	common;	Larger	cache	
	 	 	 	 	sizes	

MEMORY	 STORAGE						CPU	NETWORK	

CPUs,	Cores	and	Concurrency	
• Embracing	MulA-core	

• Mul@-Threaded	
• Beyond	the	80-20	Rule	

• Tune	Everything		
• Lock	free	Data	Structures	

• Genera@on	Count	

• NUMA	tuning	
• Most	DB	products	say	turn		
NUMA	off.		We	keep	it	on		
because	we	did	the	hard	work.	

• Throughput	:		
• Message	Pipelines	
• Divide	and	Conquer	

hOp://www.extremetech.com/compu@ng/188911-intel-haswell-e-review-the-best-consumer-performance-chip-you-can-buy-with-some-caveats/2	

Leaving	Things	on	the	Table	

hOp://www.crankuptheamps.com//blog/posts/2016/02/26/rabbitmq-comparison-to-amps/	

One	is	not	taking	advantage	of	the	resources	.		AMPS	Queue	store	and	forward	model	is	impacted	by		larger	message	sizes	wriOen	to	
persistent	disk.	The	boOle	neck	should	be	due	to	the	h/w	limits.	

Leaving	Things	on	the	Table	

hOp://www.crankuptheamps.com//blog/posts/2016/02/26/rabbitmq-comparison-to-amps/	

Leaving	Things	
on	the	Table	

hOp://www.crankuptheamps.com/downloads/documenta@on/hpcws-apr2013-v4.pdf	

Best	Prac@ces	1	

Focus	on	Forward	Scalability	:		
When	the	next	chip	comes	with	a	jump	from	14	to	
28	cores	on	a	single	die,	the	more	concurrency	
that	can	be	realized.		

Flip	Side	:		A[enAon	to	Detail		
Single	threaded	can	be	less	worse	than	poorly/
excessively	implemented	locking.	They	are	only	
scaling	via	par11oning	the	data	i.e.	REDIS,	VoltDB		

Best	Prac@ces	2	
•  Many	Approaches:		

–  �ScyllaDB	/Cassandra	-are	sending	work	across	node	constantly	without	NUMA-
ness.	(A	Dispatch	Model	that	par@@ons	per	core)	

–  Just	got	to	do	it	the	right	way	(every	core	is	assigned	a	processing	engine-	with	
a	wide	scale	dispatch	(i.e.	48	core=	48	workers	(+	dispatch	worker)).				

•  Obvious	thing	isn’t	always	the	best	thing	in	a	highly	concurrent	context.		
A	“B-Tree”	is	common	for	db	index	schemes	but	its	not	the	best	data	
structure	for	highly	concurrent	ac@vi@es.	(30	X	performance	gain	over	
MongoDB	in	Inges@on	+	Querying).	

•  i.e.	AMPS	doesn’t	have	a	single	model..	model	for	IO	is	not	the	
same	as	querying	(i.e.	parallel	divide	and	conquer)	��We	par@@on	
what	is	important	across	the	machine.	��	

Storage	
•  How	would	you	write	your	system	differently	if	you	knew	there	would	be	a	20X	

to	40X	improvement	in	storage	I/O?	

•  Disk	
–  Fine	for	Log	Appending	(low	disk	head	movement/seek)	

•  SSD	
–  Memory	Mapped	

Files,	Key-Value		
	Stores	

•  Promise	of	XPoint	
	80	ms	throughput	limited,	
Once	you	hit	memory	limit,	it	on	

is	stuck	at	80ms	due	to	
	back	pressure	

*What	if	that	goes	down	to	8ms		

hOp://www.crankuptheamps.com//blog/posts/2014/12/08/extreme_storage_performance/	
hOp://www.crankuptheamps.com//blog/posts/2014/05/01/amps-faster-than-ever-with-memory-channel-storage/	

Not	Leaving	Things	on	the	Table	

Invest	in	a	beOer	storage	device,	and	the	soUware	should	reward	you…..	

Networking	Advancements	
How	would	you	write	your	system	differently	if	you	knew	there	would	be	a	10X	improvement	

in	network	I/O?	

548K 550K

927K

761K

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1P1S 2P4S

m
sg

s/
se

c

AMPS vs AMPS with Mellanox VMA Subscriber Rate
in msgs/sec E5-2690 v3 @ 2.60GHz over 40Gb

network and 10M 512 byte msgs

AMPS AMPS_VMA

These	are	preliminary	#s	–	we	haven’t	op@mized	it,	this	was	a	simple	LD_Preload	

Memory	

•  Know	your	cache	lines	–	and	keep	things	in	
cache	whenever	possible	

•  Keep	your	structures	and	access	paOerns	
aligned	(par@@on	read/write	sec@ons)	

•  Minimize	Heap	Memory	Alloca@on	

•  Leverage	Modern	Allocators		

•  Avoid	Thread	Bleeding	

Wash,	Rinse,	Repeat	

•  Scale	Up	and	then	Out	
•  Scale	Forward	(“enjoy	the	free	lunch”)	and	
plan	for	advancements	(i.e.	40X	Xpoint)	

•  Forget	about	80-20	,	Op@mize	every	last	part	
of	your	code	base	

•  Leverage	Many	Models/Approaches;	
Con@nually	Improve	

Thank	You!	

Any	Ques@ons?	

Feel	free	to	contact	me	at:	

	 	JMB@CRANKUPTHEAMPS.COM	

