

Financial Risk Management Analysis: Challenges, Changes and the Cloud April 2016 Jeffrey Smart, Ph.D. Managing Director RIS - Market Risk Management Department Consumer Insurance +1 818 251 4513 Jeffrey.Smart@aig.com

Overview

- Our End Customer
 - Retail investors seeking retirement income for life
- Issuers
 - Life insurance companies
- Product
 - Variable annuities with living benefit rider
 - Cash flow logic described in prospectus
 - Contingent on market rates and policyholder behavior

Business Goals for Risk Management of Variable Annuities

- Risk Management / Hedging
 - Compute values and risk statistics for retirement savings policies
 - Analytics inform daily hedge decision-making
 - Assets under management have grown from \$10 B in 2007 to \$40 B in 2015
- Valuation
 - Support GAAP financial reporting
- Capital Management
 - MRM performed analytics for CCAR (capital requirements) in 2013, 2014
 - Computationally intensive, and original driver for cloud computing
 - Capital Management analytics have moved to another department
- Support product development
 - Evaluate new products and feature changes

Business process for hedging

- Calculate values and risk profile
 - Actual P&L: from full revaluation
 - Expected P&L: Risk sensitivities times market moves
 - Understand actual vs. expected P&L
- Identify hedge instruments (e.g., futures contracts) to offset selected market risks
- Constant demand for latest information
- Scale:
 - \$40 B Book runs overnight on 8,000 cores
 - Higher compute capacity gives flexibility

Business process (con't)

- Increasing demands from business side
 - Product complexity grows
 - Assets under management grow
 - Reporting deadlines shrink
 - Higher model resolution / fewer approximations
- Technical constraints
 - Internal grid: too small when it's running / too big when it's idle

Overview

- Multi-year evolution of the computational platform
 - 1: Internal data center migration
 - 2: Run a project on the cloud
 - 3: Run month-end batch on the cloud
 - 4: Run daily production on the cloud
 - 5: Decommission internal grid
- Considerations for internal vs. external capacity

Step 1: Internal data center migration

- Capacity expanded
 - 10x more cores...
 - …in 2 time zones (to cut operational risks)
 - ...for more users (quota vs. "my hardware")
- Cut month-end batch from 4 weeks to 4 days
- Multi-department grid sharply increased utilization, driving down costs

Step 1: Internal migration (con't)

- Technical
 - New data center: infrastructure new from bare metal up
 - New capabilities: fault-tolerant, pooled resources
 - Issue resolution: infrastructure, or application?
- Organizational
 - End-users pooled resources; from "my hardware" to quota
 - Migration was a Company-wide initiative
 - Resources stretched thin, so stay organized
 - Successful migration is win/win for IT and business users

Step 2: Run a project on the cloud

- Deliverable
 - CCAR Stress Tests mandated by the Federal Reserve
 - Needed 4x increase in capacity
 - High visibility project
 - Enabled critical mass of internal resources
 - Recognition for success
- Semi-annual project
 - Manual intervention feasible
- It doesn't get better (or worse) for a pilot
 - Critical, highly visible, but tweakable

Step 2: Cloud Project (con't)

- Technical
 - Modify architecture for larger, external grid
 - More complicated than adding execute nodes to existing grid
 - Incorporate Information Security requirements
 - Modified workload (different CPU / IO balance)
 - New stresses on network, schedulers
 - Managing results (output data) is important
- Organizational
 - More people and organizations involved
 - Establish roles / responsibilities
 - New cost model
 - Internal: cost and run-time scale with number of cores
 - External: cost scales with core-hours; cut run-time at fixed cost

Step 3: Run month-end batch on cloud

- Deliverable
 - Complete month-end runs faster
- From project to process
 - Increase reliability, stability, automation

Step 3: Month-end batch (con't)

- Technical
 - Run internal, external grids in parallel; mitigates risk of down-time
 - Higher capacity cuts delivery time
 - Optimize ongoing process (vs. one-time project)
- Organizational
 - Build track record of success
 - Refine roles/responsibilities with more experience

Step 4: Run daily batch on cloud

- Deliverable
 - Reduce cost
 - Increased capacity enables model refinement
- High demand for throughput, reliability
 - Less room for manual intervention
- Hedge on market opening –markets don't wait

Step 4: Daily batch (con't)

- Technical
 - Focus on reliability
 - Overnight batch has less recovery time vs monthly
 - Continue to optimize for reliability, cut expenses
- Organizational
 - Continue to refine roles / responsibilities

Step 5: Decommission internal grid

- Cost reduction
 - Measure workload in core-hours
 - Binding constraint: 8 hours for overnight runs
 - Internal: number of cores drives cost
 - Idle time has implicit cost
 - External: workload size drives cost, not core count
 - More cores / faster batch / same cost
- Simpler process: one environment vs two

Step 5: Decommission internal grid (con't)

Internal and external cost models are different

Factor	Internal Grid	External Cloud
Capacity	Fixed	Variable
Cost	Based on grid size	Based on usage
Accounting	Capital Expense + Operating Expense	Primarily Operating Expense

Lessons Learned

- Technical
 - Make long-term plan / show incremental progress
 - Seize opportunities
 - Optimize over the right time horizon
 - Performance changes with size; rewards monitoring
 - Schedulers do not fail gracefully
- Organizational
 - Principles of project management apply
 - Revisit roles / responsibilities as scope grows
 - Understand constraints, cost models

Questions?

